VMS Help
CXXLSTD, Containers, map

 *Conan The Librarian

 			   Standard C++	Library
 		 Copyright 1996, Rogue Wave Software, Inc.

 NAME

   map  - An associative	container providing access to non-key values
   using unique keys.	A map supports bidirectional iterators.

 SYNOPSIS

   #include <map>

   template <class Key, class T,	class Compare =	less<Key>
 	   class Allocator = allocator<T> >
   class	map;

 DESCRIPTION

   map <Key, T, Compare,	Allocator> provides fast access	to stored
   values of type T  which are indexed by unique keys of type Key.
   The default operation for key comparison is the < operator.

   map provides bidirectional iterators	that point to an instance of
   pair<const Key x, T y> where x is the	key and	y is the stored	value
   associated with that key.  The definition of map provides a typedef
   to this pair called value_type.

   The types used for both the template parameters  Key	and T must
   provide the following	(where T is the	type, t	is a value of T	and
   u is a const value of T):

    Copy	constructors -	T(t) and T(u)
    Destructor	     -	t.~T()
    Address of	     -	&t and &u yielding T* and
 			const T* respectively
    Assignment	     -	t = a where a is a
 			 (possibly const) value	of T

   The type used	for the	Compare	template parameter must	satisfy	the
   requirements	for binary functions.

 INTERFACE

   template <class Key, class T,	class Compare =	less<Key>
 	   class Allocator = allocator<T> >
   class	map {

   public:

   // types

     typedef Key	key_type;
     typedef T mapped_type;
     typedef pair<const Key, T> value_type;
     typedef Compare key_compare;
     typedef Allocator allocator_type;
     typename reference;
     typename const_reference;
     typename iterator;
     typename const_iterator;
     typename size_type;
     typename difference_type;
     typename reverse_iterator;
     typename const_reverse_iterator;

     class value_compare
 	: public binary_function<value_type, value_type, bool>
      {
       friend class map<Key, T, Compare,	Allocator>;

       public :
 	bool operator()	(const value_type&,
 			 const value_type&) const;
      };

   // Construct/Copy/Destroy

     explicit map (const	Compare& = Compare(),
 		  const	Allocator& = Allocator ());
     template <class InputIterator>
      map (InputIterator, InputIterator,
 	  const	Compare& = Compare(),
 	  const	Allocator& = Allocator ());
     map	(const map<Key,	T, Compare, Allocator>&);
      ~map();
     map<Key, T,	Compare, Allocator>&
      operator= (const map<Key, T, Compare, Allocator>&);
     allocator_type get_allocator () const;

   // Iterators

     iterator begin();
     const_iterator begin() const;
     iterator end();
     const_iterator end() const;
     reverse_iterator rbegin();
     const_reverse_iterator rbegin() const;
     reverse_iterator rend();
     const_reverse_iterator rend() const;

   // Capacity

     bool empty() const;
     size_type size() const;
     size_type max_size() const;

   // Element Access

     mapped_type& operator[] (const key_type&);
     const mapped_type& operator[] (const key_type&) const;

   // Modifiers

     pair<iterator, bool> insert	(const value_type&);
     iterator insert (iterator, const value_type&);
     template <class InputIterator>
      void insert (InputIterator, InputIterator);

     iterator erase (iterator);
     size_type erase (const key_type&);
     iterator erase (iterator, iterator);
     void swap (map<Key,	T, Compare, Allocator>&);

   // Observers

     key_compare	key_comp() const;
     value_compare value_comp() const;

   // Map operations

     iterator find (const key_value&);
     const_iterator find	(const key_value&) const;
     size_type count (const key_type&) const;
     iterator lower_bound (const	key_type&);
     const_iterator lower_bound (const key_type&) const;
     iterator upper_bound (const	key_type&);
     const_iterator upper_bound (const key_type&) const;
     pair<iterator, iterator> equal_range (const	key_type&);
     pair<const_iterator, const_iterator>
       equal_range (const key_type&) const;
   };

   // Non-member	Map Operators

   template <class Key, class T,	class Compare, class Allocator>
    bool	operator== (const map<Key, T, Compare, Allocator>&,
 		   const map<Key, T, Compare, Allocator>&);

   template <class Key, class T,	class Compare, class Allocator>
    bool	operator!= (const map<Key, T, Compare, Allocator>&,
 		   const map<Key, T, Compare, Allocator>&);

   template <class Key, class T,	class Compare, class Allocator>
   bool operator< (const	map<Key, T, Compare, Allocator>&,
 		  const	map<Key, T, Compare, Allocator>&);

   template <class Key, class T,	class Compare, class Allocator>
   bool operator> (const	map<Key, T, Compare, Allocator>&,
 		  const	map<Key, T, Compare, Allocator>&);

   template <class Key, class T,	class Compare, class Allocator>
   bool operator<= (const map<Key, T, Compare, Allocator>&,
 		  const	map<Key, T, Compare, Allocator>&);

   template <class Key, class T,	class Compare, class Allocator>
   bool operator>= (const map<Key, T, Compare, Allocator>&,
 		  const	map<Key, T, Compare, Allocator>&);

   // Specialized Algorithms

   template <class Key, class T,	class Compare, class Allocator>
   void swap (map<*Key,T,Compare,Allocator>&,
 	     map<Key,T,Compare,Allocator>&);

 CONSTRUCTORS AND DESTRUCTORS

   explicit map(const Compare& comp = Compare(),
 	      const Allocator& alloc = Allocator());
 		 Default constructor.  Constructs an empty map that
                  will use the relation comp to order keys, if it
                  is supplied.  The map will use the allocator alloc for
                  all storage management.

   template <class InputIterator>
   map(InputIterator first, InputIterator last,
      const Compare& comp = Compare(),
      const Allocator& alloc = Allocator());
 	Constructs a map containing values in the range	[first,	last).
         Creation of the new map is only guaranteed to succeed if
         the iterators first and  last return values of type
         pair<class Key, class Value> and all values of Key in the
         range[first, last) are unique. The map will use the relation
         comp to order keys, and the allocator alloc for all storage
         management.

   map(const map<Key,T,Compare,Allocator>& x);
      Copy constructor.	Creates	a new map by copying all pairs of key
      and value from x.

   ~map();
      The destructor.  Releases any allocated memory for	this map.

 ALLOCATOR

   allocator_type get_allocator() const;
      Returns a copy of the allocator used by self for storage management.

 ITERATORS

   iterator
   begin() ;
      Returns an	iterator pointing to the first element stored in the
      map. "First" is	defined	by the map's comparison	operator,
      Compare.

   const_iterator
   begin() const;
      Returns a const_iterator pointing to the first element stored in
      the map.

   iterator
   end()	;
      Returns an	iterator pointing to the last element  stored in the
      map, i.e., the off-the-end value.

   const_iterator
   end()	const;
      Returns a const_iterator pointing to the last element stored in
      the  map.

   reverse_iterator
   rbegin();
      Returns a reverse_iterator	pointing to the	first element stored
      in	the map.  "First" is defined by the map's comparison operator,
      Compare.

   const_reverse_iterator
   rbegin() const;
      Returns a const_reverse_iterator pointing to the  first element
      stored in	the map.

   reverse_iterator
   rend() ;
      Returns a reverse_iterator	pointing to the	last element stored
      in the map, i.e.,	the off-the-end	value.

   const_reverse_iterator
   rend() const;
      Returns a const_reverse_iterator pointing to the last element
      stored  in the map.

 MEMBER OPERATORS

   map<Key, T, Compare, Allocator>&
   operator=(const map<Key, T, Compare, Allocator>& x);
      Assignment.  Replaces the contents	of *this with a	copy of	the
      map	x.

   mapped_type&
   operator[](const key_type& x);
      If	an element with	the key	x exists in the	map, then a reference
      to  its associated value will be returned. Otherwise the pair
      x,T() will  be inserted into the map and a reference to the
      default object T()  will be returned.

 ALLOCATOR

   allocator_type
   get_allocator() const;
      Returns a copy of the allocator used by self for storage
      management.

 MEMBER FUNCTIONS

   void
   clear();
      Erases all	elements from the self.

   size_type
   count(const key_type&	x) const;
      Returns a 1 if a value with the key x exists in  the map,
      otherwise returns a 0.

   bool
   empty() const;
      Returns true if the map is	empty, false otherwise.

   pair<iterator, iterator>
   equal_range (const  key_type&	x);
      Returns the pair, (lower_bound(x),	upper_bound(x)).

   pair<const_iterator,const_iterator>
   equal_range(const key_type& x) const;
      Returns the pair, (lower_bound(x),	upper_bound(x)).

   iterator
   erase(iterator position);
      Deletes the map element pointed to	by the iterator	position.
      Returns an iterator pointing to the element following the deleted
      element, or end() if the deleted item was the last one in this
      list.

   iterator
   erase(iterator first,	iterator last);
      Providing the iterators first and last point to the same map and
      last is reachable from first, all elements	in the range  (first,
      last) will	be deleted from the map. Returns an iterator  pointing
      to the element following the last deleted element, or  end() if
      there were no elements after the deleted range.

   size_type
   erase(const key_type&	x);
      Deletes the element with the key value x from the map, if one
      exists. Returns 1 if x existed  in	the map, 0 otherwise.

   iterator
   find(const key_type& x);
      Searches the map for a pair with the key value x and returns an
      iterator to that pair if it is found.  If such  a  pair
      is not found  the value end() is returned.

   const_iterator find(const key_type& x) const;
      Same as find above	but returns a const_iterator.

   pair<iterator, bool>
   insert(const value_type& x);
   iterator
   insert(iterator position, const value_type& x);
      If	a value_type with the same key as  x  is  not present in the
      map, then x is inserted into the map. Otherwise, the pair is not
      inserted. A position may be supplied as a hint regarding where
      to do the insertion. If the insertion may be done right after
      position then it takes  amortized  constant time.  Otherwise it
      will take O(log N) time.

   template <class InputIterator>
   void
   insert(InputIterator first, InputIterator last);
      Copies of each element in the range [first, last) which  possess
      a unique key, one not already in the	map, will be inserted
      into the map. The  iterators first and last must	return values
      of type pair<T1,T2>. This  operation takes approximately
      O(N*log(size()+N)) time.

   key_compare
   key_comp() const;
      Returns a function	object capable of comparing key	values using
      the comparison operation,	Compare, of the	current	map.

   iterator
   lower_bound(const key_type& x);
      Returns a reference to the	first entry with a key greater than
      or equal to x.

   const_iterator
   lower_bound(const key_type& x) const;
      Same as  lower_bound above	but returns a const_iterator.

   size_type
   max_size() const;
      Returns the maximum possible size of the map.   This size is only
      constrained by the number of unique keys which can be represented
      by the type Key.

   size_type
   size() const;
      Returns the number	of elements in the map.

   void
   swap(map<Key,	T, Compare, Allocator>&	x);
      Swaps the contents	of the map x with the current map, *this.

   iterator
   upper_bound(const key_type& x);
      Returns a reference to the	first entry with a key less than or
      equal to x.

   const_iterator
   upper_bound(const key_type& x) const;
      Same as upper_bound above but returns a const_iterator.

   value_compare
   value_comp() const;
      Returns a function	object	capable	of comparing pair<const	Key,
      T> values using the comparison operation, Compare, of	the
      current map. This function is identical	to key_comp for	sets.

 NON-MEMBER OPERATORS

   template <class Key, class T,	class Compare, class Allocator>
   bool operator==(const	map<Key, T, Compare, Allocator>& x,
 		  const	map<Key, T, Compare, Allocator>& y);
 		     Returns true if all elements in x are element-wise
                      equal to all elements in y, using (T::operator==).
                      Otherwise it returns false.

   template <class Key, class T,	class Compare, class Allocator>
   bool operator!=(const	map<Key, T, Compare, Allocator>& x,
 		  const	map<Key, T, Compare, Allocator>& y);
 		     Returns !(x==y).

   template <class Key, class T,	class Compare, class Allocator>
   bool operator<(const map<Key,	T, Compare, Allocator>&	x,
 		 const map<Key,	T, Compare, Allocator>&	y);
 		    Returns true if x is lexicographically less	than y.
                     Otherwise, it returns false.

   template <class Key, class T,	class Compare, class Allocator>
   bool operator>(const map<Key,	T, Compare, Allocator>&	x,
 		 const map<Key,	T, Compare, Allocator>&	y);
 		    Returns y <	x.

   template <class Key, class T,	class Compare, class Allocator>
   bool operator<=(const	map<Key, T, Compare, Allocator>& x,
 		 const map<Key,	T, Compare, Allocator>&	y);
 		    Returns !(y	< x).

   template <class Key, class T,	class Compare, class Allocator>
   bool operator>=(const	map<Key, T, Compare, Allocator>& x,
 		 const map<Key,	T, Compare, Allocator>&	y);
 		    Returns !(x	< y).

 SPECIALIZED ALGORITHMS

   template <class Key, class T,	class Compare, class Allocator>
   void swap(map<Key, T,	Compare, Allocator>& a,
 	    map<Key, T,	Compare, Allocator>& b);
 	       Efficiently swaps the contents of a and b.

 EXAMPLE

   //
   // map.cpp
   //
    #include <string>
    #include <map>
    #include <iostream.h>

   typedef map<string, int, less<string>	> months_type;

    // Print out	a pair
   template <class First, class Second>
   ostream& operator<<(ostream& out,
 		      const pair<First,Second> & p)
    {
     cout << p.first << " has " << p.second << "	days";
     return out;
    }

    // Print out	a map
   ostream& operator<<(ostream& out, const months_type &	l)
    {
     copy(l.begin(),l.end(), ostream_iterator
 		  <months_type::value_type,char>(cout,"0));
     return out;
    }

   int main(void)
    {
      //	create a map of	months and the number of days
      //	in the month
     months_type	months;

     typedef months_type::value_type value_type;

      //	Put the	months in the multimap
     months.insert(value_type(string("January"),	  31));
     months.insert(value_type(string("February"),   28));
     months.insert(value_type(string("February"),   29));
     months.insert(value_type(string("March"),	  31));
     months.insert(value_type(string("April"),	  30));
     months.insert(value_type(string("May"),	  31));
     months.insert(value_type(string("June"),	  30));
     months.insert(value_type(string("July"),	  31));
     months.insert(value_type(string("August"),	  31));
     months.insert(value_type(string("September"), 30));
     months.insert(value_type(string("October"),	  31));
     months.insert(value_type(string("November"),  30));
     months.insert(value_type(string("December"),  31));

      //	print out the months
      //	Second February	is not present
     cout << months << endl;

      //	Find the Number	of days	in June
     months_type::iterator p = months.find(string("June"));

      //	print out the number of	days in	June
     if (p != months.end())
       cout << endl << *p << endl;

     return 0;
    }

   Output :
   April	has 30 days
   August has 31	days
   December has 31 days
   February has 28 days
   January has 31 days
   July has 31 days
   June has 30 days
   March	has 31 days
   May has 31 days
   November has 30 days
   October has 31 days
   September has	30 days

 WARNING

   Member function templates are	used in	all containers provided	by the
   Standard C++ Library.  An	example	of this	feature	is the constructor
   for map<Key,T,Compare,Allocator> that takes two templated iterators:

   template <class InputIterator>
   map (InputIterator, InputIterator, const Compare& = Compare(),
        const Allocator&	= Allocator());

   map also has an insert function of this type.	 These functions, when
   not restricted by compiler limitations, allow you to use any type
   of input iterator as arguments.  For compilers that do not support
   this  feature, we provide substitute functions that allow you to use
   an	iterator obtained from the same type of container as the one
   you are  constructing (or calling a member function on), or you can
   use a pointer  to the type of element you have in the container.

   For example, if your compiler	does not support member	function
   templates, you can construct a map in the following two ways:

   map<int, int,	less<int> >::value_type	intarray[10];
   map<int, int,	less<int> > first_map(intarray,	intarray + 10);
   map<int, int,	less<int> > second_map(first_map.begin(),
 				      first_map.end());

   But not this way:

   map<long, long, less<long> > long_map(first_map.begin(),
 				       first_map.end());

   Since	the long_map and first_map are not the same type.

   Also,	many compilers do not support default template arguments.   If
   your compiler is one of these, you	need to	always supply the
   Compare template argument and the Allocator template argument. For
   instance, you'll have to write:

   map<int, int,	less<int>,  allocator<int> >

   instead of:

   map<int, int>

 SEE ALSO

   allocator, Containers, Iterators, multimap

 STANDARDS CONFORMANCE
   ANSI X3J16/ISO WG21 Joint C++	Committee
  Close     Help